Search results for "Distortion problem"

showing 1 items of 1 documents

Proper 1-ball contractive retractions in Banach spaces of measurable functions

2005

In this paper we consider the Wosko problem of evaluating, in an infinite-dimensional Banach space X, the infimum of all k > 1 for which there exists a k-ball contractive retraction of the unit ball onto its boundary. We prove that in some classical Banach spaces the best possible value 1 is attained. Moreover we give estimates of the lower H-measure of noncompactness of the retractions we construct. 1. Introduction Let X be an infinite-dimensional Banach space with unit closed ball B(X) and unit sphere S(X). It is well known that, in this setting, there is a retraction of B(X) onto S(X), that is, a continuous mapping R : B(X) ! S(X) with Rx = x for all x 2 S(X). In (4) Benyamini and Sternf…

Discrete mathematicsUnit spherePure mathematicsMeasurable functionGeneral MathematicsBanach spaceLipschitz continuityInfimum and supremumIsolated pointDistortion problemMultivalued mapMapBall (mathematics)minimal displacementMathematics
researchProduct